Complete Attack on RLWE Key Exchange with reused keys, without Signal Leakage

نویسندگان

  • Jintai Ding
  • Scott R. Fluhrer
  • Saraswathy RV
چکیده

Key Exchange (KE) from RLWE (Ring-Learning with Errors) is a potential alternative to Diffie-Hellman (DH) in a post quantum setting. Key leakage with RLWE key exchange protocols in the context of key reuse has already been pointed out in previous work. The Signal leakage attack relies on changes in the signal sent by the responder reusing his key, in a sequence of key exchange sessions initiated by an attacker with a malformed key. A possible defense against this attack would be by requiring the initiator of the key exchange to send the signal, which is the one pass case of the KE protocol. The initial attack described bu Fluhrer is designed in such a way that it only works on Peikert’s KE protocol and its variants that derives the shared secret from the most significant bits of the approximately equal keys computed by both parties. It does not work on the Ding’s key exchange that uses the least significant bits to derive a shared key. In this work, we describe a new attack on Ding’s one pass case without relying on the signal function output but using only the information of whether the final key of both parties agree. We also use LLL reduction to make the adversary’s keys random looking to the party being compromised. This completes the series of attacks on RLWE key exchange with key reuse for all variants in both cases of the initiator and responder sending the signal. This work shows that when a party fixes their public key for a long term, the protocol can always be broken by a malicious user. Moreover, we show that the previous Signal leakage attack can be made more efficient with fewer queries and how it can be extended to Peikert’s key exchange, which was used in the BCNS implementation and integrated with TLS and a variant used in the New Hope implementation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the leakage-resilient key exchange

Typically, secure channels are constructed from an authenticated key exchange (AKE) protocol,which authenticates the communicating parties based on long-term public keys and establishes secretsession keys. In this paper we address the partial leakage of long-term secret keys of key exchangeprotocol participants due to various side-channel attacks. Security models for two-party authe...

متن کامل

Efficient Implementation of Password-Based Authenticated Key Exchange from RLWE and Post-Quantum TLS

Two post-quantum password-based authenticated key exchange (PAKE) protocols were proposed at CT-RSA 2017. Following this work, we give much more efficient and portable C++ implementation of these two protocols. We also choose more compact parameters providing 200-bit security. Compared with original implementation, we achieve 21.5x and 18.5x speedup for RLWE-PAK and RLWE-PPK respectively. Compa...

متن کامل

Attacking (EC)DSA Given Only an Implicit Hint

We describe a lattice attack on DSA-like signature schemes under the assumption that implicit information on the ephemeral keys is known. Inspired by the implicit oracle of May and Ritzenhofen presented in the context of RSA (PKC2009), we assume that the ephemeral keys share a certain amount of bits without knowing the value of the shared bits. This work also extends results of Leadbitter, Page...

متن کامل

Recovering Secret Keys from Weak Side Channel Traces of Differing Lengths

Secret key recovery from weak side channel leakage is always a challenge in the presence of standard counter-measures. The use of randomised exponent recodings in RSA or ECC means that, over multiple re-uses of a key, operations which correspond to a given key bit are not aligned in the traces. This enhances the difficulties because traces cannot be averaged to improve the signal-to-noise ratio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2017  شماره 

صفحات  -

تاریخ انتشار 2017